Chapter 7: Modular Programming with Functions 201

PercentageChart(m2, '\xCD');
cout << "Savithri: *;
PercentageChart(m3, '~');
cout << "Anand "y
PercentageChart(m4, '!');

)

void PercentageChart(int percentage, char style)

for(int i = 0; i1 < percentage/2; i++)
cout << style;
cout << endl;

}

Run
Enter percentage score of Sri, Raj, Savi, an: 55 92 83 67

Sridevi : LA R EREEEE R EEERE EERE R IEIR IR IR

Rajkumar: B e L e L T T]
Savithri: =~~~
Anand AN

The process of passing two parameters is similar to passing a single parameter. The value of the first
actual parameter in the caller (calling function) is assigned to the first formal parameter in the callee
(called function), and the value of the second actual parameter is assigned to the second formal param-
eter, as shown in Figure 7.7. Of course, more than two parameters can be passed in the same way.

'\XCD'

void main (void) m2

)

{ int PercentageChart(int p;?:emage. char style)
=== {
PN N N ANANAAAA AN
m2=92; AnmnAA A~

}

PercentageChart (m2, '\xCD"') ;

it Callee

Caller
Figure 7.7: Multiple arguments passed to a function

7.4 Function Return Data Type

The return value can be a constant, a variable, a user-defined data structure, a general expression
(reducible expressions), a pointer to a function or a function call (in which case the call must return a
value). C++ does not place any restriction on the type of return value, except that it cannot be an array
(a pointer to an array can be returned. A function can return an array that is a part of a structure).

202 Mastering C++

// ifact.ecpp: factorial computation Returns a long integer value
#include <iostream.h>
long fact(int n)}
{
long result;
if(n==0)
result = 1; // factorial of zero is one
else
{
result = 1;
for(int i = 2; 1 <= n; i++)
result = result * i;
}
return result;
}
void main(void)

{
int n;
cout << "Enter the number whose factorial is to be found: ";
cin >> n;
cout << "The factorial of " << n << " is " << fact(n) << endl;
}
Bun

Enter the number whose factorial is to be found: 5
The factorial of 5 is 120

The definition before main () indicates that the function fact takes an integer argument and
returns a long datatype. It ensures that the correct value is returned by defining the appropriate data
type (i.e, a Long variable) and placing it in the return statement. Suppose that the variableresult was
defined as an integer, the compiler performs the necessary type conversion (i.e., to type long) and
returns a value of type 1ong, irrespective of the data variable to which the return value is assigned.

A function with a return value can be placed as an individuai statement (i.e., the return value need
not be assigned to any variable(s)). An example is given below.

int SumTwo(int nl, int n2) // nl and n2 are the parameters

{

return nl + n2;

}

When a function has nothing specific to return or take, it is indicated by void. Typically, such func-
tions are called void functions. The following is the prototype of a void function:

void func(void);
However, the keyword void is optional. C++ maintains strict type checking and an empty argument list
is interpreted as the absence of any parameters.

Limitation of return

A key limitation of the return statement is that it can be used to return only one item from a function.
An alternative method to overcome this limitation is to use parameters as a media of communication
between calling and called functions.

Chapter 7: Modular Programming with Functions 203

7.5 Library Functions

Library functions are shipped along with the compilers. They are predefined and pre-compiled into
library files, and their prototypes can be found in the files with . h (called header files) as their extension
in the include directory. The definitions are available in the form of object codes in the files with
-1ib (called library files) as their extension in the 1ib directory. In order to make use of a library
function, include the corresponding header file. Once the header file is included, any function available
in that library can be invoked. The linker will add such functions to a calling program by extracting them
from an appropriate function library. Some of the library calls are sqrt (), pow () (declared in the
header filemath.h),strlen(), strcat (), strepy(), and strncpy () (declared instring.h).
In case of user defined functions, the prototype and definitions of the functions must be a part of a
program module. The program namelen. cpp illustrates the use of library functions.

// namelen.cpp: use of string library functions

#include <iostream.h>

#include <string.h> // string function header file

void main()

{

char name([20 }];

cout << "Enter your name: ";

cin >> name;

int len = strlen(name); // strlen returns the length of name
cout << "Length of your name = " << len;

}

Run

Enter your name: Rajkumar
Length of your name = 8

Note that, the statement
#include <string.h>
informs the compiler to include the prototypes of the string related functions. The statement
int len = strlen(name);

invokes the library function strlen and assigns the length of the string stored in the variable name
to the variable len.

The calls may be mathematical, such as sin (), cos () ,10g10 () or may even include functions
to round a value or truncate a resultant value. The program maths . cpp accesses mathematical func-
tions.

// maths.cpp: Use of library function calls to round and truncate a result
#include <iostream.h>
#include <math.h>
void main(void)
{
float num, numl, num2;
cout << "Enter any fractional number: *;
cin >> num;
numl = ceil(num); // rounds up

204 Mastering C++

num2 = floor(num); // rounds down
cout << "ceil(" << num << ") = " << numl << endl;
cout << "floor(* << num << ") = " << num2 << endl;
}
Runt

Enter any fractional number: 2.9
ceil(2:9) =3
floor(2.9) = 2

Run2
Enter any fractional number: 2,1
ceil(2.1) =3
floor(2.1) = 2

Library functions improve the program design, reduce debugging and testing time, thereby reduc-
ing the amount of work needed for the development of the program. These functions are certainly better
programmed, tested, and well proved. Hence, the use of library functions increases the program
reliability and reduces the complexity.

7.6 Parameter Passing

Parameter passing is a mechanism for communication of data and information between the calling
function (caller) and the called function (callee). It can be achieved either by passing the value o
address of the variable. C++ supports the following three types of parameter passing schemes:

+ Pass by Value
« Pass by Address
« Pass by Reference (only in C++)

The parameters used to transfer data to a function are known as input-parameters and those used to
transfer the result to the caller are known as output-parameters. The parameters used to transfer data in
both the directions are called input-output parameters.

Parameters can be classified as formal parameters and actual parameters. The formal parameters are
those specified in the function declaration and function definition. The actual parameters are those
specified in the function call. The following conditions must be satisfied for a function call:

« the number of arguments in the function call and the function declarator must be the same.

« the data type of each of the arguments in the function call should be the same as the corresponding
parameter in the function declarator statement. However, the names of the arguments in the function
call and the parameters in the function definition can be different.

Pass by Value

The default mechanism of parameter passing is called pass by value. Pass-by-value mechanism does
not change the contents of the argument variable in the calling function (caller), even if they are
changed in the called function (callee); because the content of the actual parameter in a caller is copied
to the formal parameter in the callee. The formal parameter is stored in the local data area of the callee.
Changes to the parameter within the function will effect only the copy (formal parameters), and will have
no effect on the actual argument. It is illustrated in the program swapl . cpp. Most of the functions
discussed earlier fall under the category pass-by-value parameter passing.

Chapter 7: Modular Programming with Functions 205

// swapl.cpp: swap integer values by value
#include <iostream.h>
‘'void swap(int x, int y)
{
int t; // temporary used in swapping
cout<<"Value of x and y in swap before exchange: "<< x <<" "<< y << endl;
t = x;
X =Yy
y = t;
cout<<"Value of x and y in swap after exchange: "<< X <<" " << y << endl;
}
void main()
{
int a, b;
cout << "Enter two integers <a, b>: ";
cin >> a >> b;
swap(a, b);
cout << *"Value of a and b on swap(a, b) in main(): * << a << " " << b;

}

Run

Enter two integers <a, b>: 10 20

value of x and y in swap before exchange: 10 20
Value of x and y in swap after exchange: 20 10
Value of a and b on swap(a, b) in main(): 10 20

In main (), the statement
swap(x, y)
invokes the function swap () and assigns the contents of the actual parameters a and b to the formal
parameters x and y respectively. In the swap () function, the input parameters are exchanged, how-
ever it is not reflected in the caller; actual parameters a and b do not get modified (see Figure 7.8).

void main (void) void swap(int x, int y)
{ {
int a, b; int t;
PArron t=x;
swap(a, b); X=Y;
. AAAPAAAA y=t;

"
- 10 -4
1552 r———lo—"a//‘__ﬁ x

1554 —--20-—-b/ - 20 -4y

L __—

Figure 7.8: Parameter passing by value

206 Mastering C++

Pass by Address

C++ provides another means of passing values to a function known as pass-by-address. Instead of
passing the value, the address of the variable is passed. In the function, the address of the argument is
copied into a memory location instead of the value. Thé de-referencing operator is used to access the
variable in the called function.

// swap2.cpp: swap integer values by pointers
#include <iostream.h>
void swap(int * x, int * y)

{

int t; // temporary used in swapping
t = *x;

*x = *y;

*y = t;

}
void main()
{
int a, h;
cout << "Enter two‘integers <a, b>: *;
cin >> a >> b;
swap(&a, &b);
cout << "Value of a and b on swap(a, b): * << a << " *. << b;

}

Run
Errter two integers <a, b>: 10 20
Value of a and b on swap(a, b): 20 10

In main (), the statement
swap(&x, &y)

invokes the function swap and assigns the address of the actual parameters a and b to the formal
parameters x and y respectively.

void main (void) void swap(int *x, int *y)
{ {
int a, b; int t;
AAMAAAN t=*x;
AAAAAAAA ’
swap (&a, &b); Lot~ F*x=*y;
AAAAAAAA 20,1 - *y=t;
AAAAAAA s A~ ’
’ - } f
} B ,19',
. L
. ¢
1552 ___10_‘__a/ - -1552- 4 x
:—20-—::}: /-_1554" Y

Figure 7.9: Parameter passing by address

Chapter 7: Modular Programming with Functions 207

In swap (), the statement

t = *x;
assigns the contents of the memory location pointed to by the pointer (address) stored in the variable
x (It is effectively accessing the contents of the actual variable a in the caller. Similarly, the parametery
holds the address of the parameter b. Any modification to the memory contents using these addresses
will be reflected in the caller; the actual parameters a and b get modified (see Figure 7.9).

Pass by Reference

Passing parameters by reference has the functionality of pass-by-pointer and the syntax of call-by-
value. Any modifications made through the formal pointer parameter is also reflected in the actual
parameter. Therefore, the function body and the call to it is identical to ihat of call-by-value, but has the
effect of call-by-pointer.

To pass an argument by reference, the function call is similar to that of call by value. In the function
declarator, those parameters, which are ¢o be received by reference must be preceded by the & operator.
The reference type formal parameters are accessed in the same way as normal value parameters. How-
ever, any modification to them will also be reflected in the actual parameters. The program swap3 . cpp
illustrates the mechanism of passing parameters by reference.

// swap3.cpp: swap integer values by reference
#include <iostream.h>

void swap(int & x, int & y)

(v

int t; // temporary used in swapping
t = x;
X = Yi
y = t;

}
void main()
{
int a, b;
cout << "Enter two integers <a, b>: *;
cin >> a >> b;
swap(a, b);
cout << "Value of a and b on swap(a, b }): " << a << " " << b;

}

Run

Enter two integers <a, b>: 10 20
value of a and b on swap(a, b): 20 10

In main (), the statement
swap(a, b };
is translated into
swap(& a, & b);
internally during compilation. The function declarator
void swap(int & a, int & b)
indicates that the formal parameters are of reference type and hence, they must be bound to the memory

208 Mastering C++

location of the actual parameter. Thus, any access made to the reference formal parameters in the
swap () function refers to the actual parameters. The following statements in the body of the swap ()
= function:

t = x;
X =Yi
y = t;

(as treated by the compiler) have the following interpretation internally:
t = *x; // store the value pointed by x into t
*x = *y; // store the value pointed by y into location pointed by x
*y = t; // store the value hold by 't' into location pointed by y

This is because, the formal parameters are of reference type and therefore the compiler treats them
similar to pointers but does not allow the modification of the pointer value (cannot be made to point to
some other variable). Changes made to the formal parameters x andy reflect on the actual parametersa
and b (see Figure 7.10).

void main (void) void swap(int &x, int &y)

{ {
int a, b; int t;
A t=x;
swap(a, b); -t - -x=y;
A~ 20 | -y=t; o
/ - r
’ .7 1)
) f I/ 191
’
v/
1552 ___10____a/ - -1552-4 x
\4 .
R e //////’,,————O--1554-<y
e _ f

Figure 7.10: Parameter passing by reference

The following points can be noted about reference parameters:

« A reference can never be null, it must always referto a legitimate object (variable).
« Once established, a reference can never be changed so as to make it point to a different object.

« A reference does not require any explicit mechanism to dereference the memory address and access
the actual data value.

Note

Procedures can be implemented using functions. A function with no return value can be treated similar
to a procedure of Pascal. The main difference between using functions and procedures in C++ (or C) is
that function can be placed on the right side of the ‘=" (assignment) and on either side of == (equal)
operator. Procedures (function with no return values) cannot be used with these operators. The return
value from the function can be directly passed to cout for display, whereas procedures cannot be used
in the cout statement.

Chapter 7: Modular Programming with Functions 209

Niceties of Parameter Passing

Pass by address/reference is also used when the size of the user defined data-structure is large, since a
large number of arguments cannot be accommodated in the limited stack space. Consider the following
declaration:

struct LargeStruct

{

char Name[30];

unsigned int Age, Sex;

char Address([50];

enum MartialStatus { Married, Unmarried } Ms;
}i

If a variable of the above structure type is passed by value, 85 bytes of data movement between the
caller space and a function stack space is required. If it is passed by address, it just requires 4 bytes
movement and thus reduces the function context switching overhead.

7.7 Return by Reference

A function that returns a reference variable is actually an alias for the referred variable. This method of
returning referénces is used in operator overloading to form a cascade of member function calls speci-
fied in a single statement. For example,

cout << i << j << endl;

is a set of cascaded calls that returns a reference to the object cout. The program ref . cpp illustrates
the function return value by reference.

// ref.cpp: return variable by reference
#include <iostream.h>
int & max(int & x, int & y); // prototype
void main ()
{
int a, b, c¢;
cout << "Enter two integers <a, b>: ";
cin >> a >> b;

max(a, b) = 425;
cout<<"The value of a and b on execution of max(a,b) = 425; ..." << endl;
cout << "a = " << a << " b =" << b;
}
int & max(int & x, int & y) // function definition
{
// all the statements enclosed in braces form body of the function
if(x> y)
return x; // function return
else
return y; // function return
}
Runi

Enter two integers <a, b>: 1 2

210 Mastering C++

The value of a and b on execution of max(a, b) = 425;
a=1Db = 425

Run2

Enter two integers <a, b>: 2_1 .

The value of a and b on execution of max(a, b) = 425;

a=425b =1

In main (), the statement
max(a, b) = 425;
invokes the function max. It returns the reference to the variable holding the maximum value and
assigns the value 425 to it (see Run2). Since the return type of the max () is int &, it implies that the
call to max () can appear on the left-hand side of an assignment statement. Therefore, the above
statement is valid and assigns 425 to a if it is larger, otherwise, it is assigned to b.

7.8 Default Arguments

Normally, a function call should specify all the arguments used 1n the function definition. In a C++
function call, when one or more arguments are omitted, the function may be defined to take default
values for the omitted arguments by providing the default values in the function prototype.

Parameters without default arguments are placed first, and those with default values are placed later
(because of the C++ convention of storing the arguments on the stack from right to left). Hence the
feature of default arguments allows the same function to be called with fewer arguments than defined
in the function prototype.

To establish a default value, the function prototype or the function definition (when functions are
defined before being called) must be used. The compiler checks the function prototype/declarator with
the arguments in the function call to provide default values (if available) to those arguments, which are
omitted. The arguments specified in the function call explicitly always override the default values
specified in the function prototype/declarator. In a function call, all the trailing missing arguments are
replaced by default arguments as shown in Figure 7.11.

- - - -

- ———— ~
void PrintLine(char='~', int=70); \:-\ - RN
NN N
void main() ¢> void main() \ | '
{ (v ¥ ,
PrintLine()y ««--cvoeoofrroeeee -» PrintLine('-*, 70); Pie
PrintLine('!'); focovivitn > PrintLine('!', 70);4-[
PrintLine(*'**', 40); -{.-.....-.. -» PrintLine('*', 40);
PrintLine('R', 55);. .{-........ -» PrintLine('R', 55);
) }

Figure 7.11: Preprocessor handling missing arguments
at function call using default arguments

When a function is called by omitting‘ some arguments, they are supplied by the compiler implicitly.
The code of the program by no means becomes shorter or more efficient, but it provides high flexibility

Chapter 7: Modular Programming with Functions 211

on programming. Functions may be defined with more than ore default argument.

Default arguments must be known to the compiler prior to the invocation of a function. It reduces
the burden of passing arguments explicitly at the point of the function call. The program defargl . cop
illustrates the concept of default arguments.

// defargl.cpp: Default arguments to functions
- #include <iostream.h>

void PrintLine(char = '-', int = 70);
void main()
{
PrintLine(); // uses both default arguments
- PrintLine('!' }; // assumes 2nd argument as default

PrintLine('*', 40); // ignores default arguments

PrintLine('R', 55); // ignores default arguments
}
void PrintLine(char ch, int RepeatCount)}
{

inc 1i;

cout << endl;

for(i = 0; i < RepeatCount; i++)

cout << ch;

',':**‘k*******‘*****************************

In main (), when the compiler encounters the statement
PrintLine();
it is replaced by the statement
PrintLine('-', 70);
internally by substituting the missing arguments. Similarly, the statement

PrintLine('!"' };
is replaced by
PrintLine('!',70);

Note that in the first statement both the arguments are default arguments and in the second case only
the missing argument (second argument) is replaced by its default value.

The feature of default arguments can be utilized in enhancing the functionality of the program
without the need for modifying the old code referencing to functions. For instance, the function in the
above program :

void PrintLine(char = '-', int =70 });
prints a line with default character “* in case it is not passed explicitly. This function can be enhanced
to print multiple lines using the new prototype:

void PrintLine(char = '-', int = 70, int =1);
In this new function, the last parameter specifies the number of lines to be printed and by default, it is

212 Mastering C++

1. Therefore, the old code referring to this function need not be modified and new statements can be
added without affecting the functionality. The program defarg2.cpp extends the capability of
defargl.cpp program.

/ / defarg2.cpp: extending the functionality without modifying old calls
#include <iostream.h>

void PrintLine(char = '-', int = 70, int =1);

void main()

{
PrintLine(); // uses both default arguments
PrintLine('!'); // assumes 2nd argument as default

PrintLine('*', 40); // ignores default arguments
PrintLine('R', 55); // ignores default arguments
// new code, Note: old code listed above is unaffected
PrintLine('&', 25, 2);

}
void PrintLine(char ch, int RepeatCount, int nLines)
{
int i, 3j;
for(j = 0; j < nLines; j++)
{
cout << endl;
for(i = 0; i < RepeatCount; i++)
cout << ch;
}
}
Bun

AAKKAKKAEKRARAKAARAKRARKR A AR A AR A KA AR AR Ak h ok kd

RRR
60888 6o B B b 6 6 8o e B 8c e 8 & S e 8 & b & be &
80 6 8 8o Bc 8 8 8o 8 S e 8 B 8o e 8 6 8 5 b b 5 &b &

The following statements in the above two programs

PrintLine(); // uses both default arguments
PrintLine('!'); // assumes 2nd argument as default
PrintLine('*', 40); // ignores default arguments

PrintLine('R', 55): // ignores default arguments
are the same. Though the functionality of PrintLine () is enhanced in the program defarg2 . cpp,
the old code referring to it remains unaffected in terms of its functionality; the compiler supplies the last
argument as 1, ard thereby the new function does the same operation as that of the old one. Thus, the
C++ feature of default arguments can be potentially utilized in extending a function without modifying
the old code.

A default argument can appear either in the function prototype or definition. Once it is defined, it
cannot be redefined. It is advisable to define default arguments in the function prototype so that it is
known to the compiler at the time of compilation. Variable names may be omitted while assigning default
" values in the prototype.

Chapter 7: Modular Programming with Functions .213

7.9 Inline Functions

Function calls involve branching to a specified address, and returning to the instruction following the
function call. That is, when the program executes a function call instruction, the CPU stores the memory
address of the instruction following the function call, copies the arguments of the function.call onto the
stack, and finally transfers control to the specified function. The CPU then executes the function code,
stores the function return value in a predefined memory location/register, and returns control to the
calling function. This constitutes an overhead in the execution time of the program. This overhead is
relatively large if the time required to execute a function is less than the context switch time.

C++ provides an alternative to normal function calls in the form of inline-functions. Inline functions
are those whose function body is inserted in place of the function call statement during the compilation
process. With the inline code, the program will not incur any centext switching overhead. The concept
of inline functions is similar to riacro functions of C. Hence; inline functions enjoy both the flexibility
and power offered by normal functions and macro functions respectively.

'~ An inline function definition is similar to an ordinary function except that the keyword inline
precedes the function definition. The syntax for defining an inline function is shown in Figure 7.12..

“inline int sgr(int num)
R

return num*num;

}

void main ()] void main ()
{ preprocessor {
AAAAAAAA AAAAAAAA
AAAAAAAA AAAAAAAN
a=sqr(S);--j-----=-=-=~-= - » a=5*5;
b=sqr(n); - -j- - = === == == -» b=n¥n;
AAAAAAAA AAAAAAAA
} ANAANANAAA) AAAAAAAA

Figure 7.12: Inline function and its expansion

The significant feature of inline functions is: there is no explicit function call and body is substituted
at the point of in1ine function call, thereby, the run-time overhead for function linkage mechanism is
reduced. The program square.cpp uses inline function to compute the square of a number.

// square.cpp: square of a number using inline function
#include <iostream.h>
inline int sqgr(int num)
{
return num*num;
}
void main ()
{
float n;
cout << "Enter a number: ";
cin >> n;
cout << "Its Square = " << sqgr{ n) << endl;

214 Mastering C++

cout << "sqgr{(10) = " << sqgr(10);

)

Run
Enter a number: 5
Its Square = 25
sgr(10) = 100

'n main, the statement

cout << *Its Square = " << square(num);

invokes the inline function square (. .). It will be suitably replaced by the instruction(s) of the
body of the function square (. .) by the compiler. The execution time of the function square (. .)
is less than the time required to establish a linkage between the caller (calling function) and callee (called
function). Execution of a normal function call involves the operation of saving actual parameter and
function return address onto the stack followed by a call to the function. On return, the stack must be
cleaned to restore the original status. This process is costly when compared to having square compu-
tation instructions within a caller's body. Thus, inline functions enjoy the flexibility and modularity
of functions and at the same time achieve computational speedup. Functions having small body do not
increase the code size, although they are physically substituted at the point of a call: there is no code
for function linkage mechanism. Hence, it is advisable to declare the functions having a small function
body as inline functions.

The compiler has the option to treat the inline function definition as normal functions (a warning
message is displayed). The compiler does not allow large segments of code to be grouped as inline
functions. The compiler does not treat functions with loops as inline. Programs with inline functions
execute faster than programs containing normal functions (non inline) at the cost of increase in the size
of the executable code.

7.10 Function Overloading

Function polymorphism, or function overloading is a concept that allows multiple functions to share
the same name with different argument types. Function polymorphism implies that the function defini-
tion can have multiple forms. Assigning one or more function body to the same name is known as
function overloading or function name overloading.

The program swap4 . cpp illustrates the need for function overloading. It has multiple functions
for swapping numbers of different data types but with different names.

// swap4.cpp: multiple swap functions with different names
#include <iostream.h>
void swap_char(char & x, char & y)
{
char t; // temporary used in swapping
t = X,
X = Yi
y = t;

Chapter 7: Modular Programming with Functions 215

void swap_int(int & x, int & y)

{
int t; // temporary used in swapping
t = x;
X = y;
y = t;

}
void swap_float(float & x, float & y)
{

float t; // temporary used in swapping

t = x;
X = y;
y = t;

}
void main()
{
char chl, ch2;
cout << "Enter two Characters <chl, ch2>: *;
cin >> chl >> ch2;
swap_char(chl, ch2);
cout << "On swapping <chl, ch2>: " << chl << " * << ch2 << endl;
int a, b;
cout << "Enter two integers <a, b>: *;
cin >> a >> b;
swap_int(a, b);
cout << "On swapping <a, b>: " << a << " " << b << endl;
float c, d;
cout << "Enter two floats <c, d>: *;
cin >> ¢ >> d;
swap_float(c, 4);
cout << "On swapping <c, d>: " << ¢ << " * << d;

}

Run

Enter two Characters <chl, ch2>: R K
On swapping <chl, ch2>: KR

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5
On swapping <c, d>: 99.5 20.5

The above program has three different functions:

void swap_char(char & x, char & y)

void swap_int(int & x, int & y)

void swap_float(float & x, float & y)
performing the same activity, but on different data types. Logically, all the three functions display the
value of the input parameters. It has names such as swap_char, swap_int, swap_float, elc,
making the task of programming difficult and creating the need to remember function names, which
perform the same operation. In C++, this difficulty is circumvented by using the feature of overloading
the function.

*i216 zNMastaring Ceh:

In C++, two or more functions can be given the same name provided the signatur& (parameters count
or their data types) of each of them is unique either in the number or data type of their arguments. It is
possible to define several functions having the same name; but performing different actions. It helps in
reducing the need for unusual function names, making the code easier to read. The functions must only
differ in the argument list. For example

swap(int, int); // prototype

swap(float, float); // prototype]
From user’s view point, there is only one operanon which pcrforrns swappmg numbers of dxffcrent data
types. ‘ -

All the functions performing the same operation must differ in terms of the input argument data-types
or number of arguments. The program swap5 . cpp illustrates the benefits of function overloading.

// swap5.cpp: multiple swap functions, function overloading
#include <iostream.h>
void swap(char & x, char & y)

char t; // temporarily used in swapping
t = xX;
X =Y .
y = t;)
}
void swap(int & x, int & y)
{
int t; // temporarily used in swapping
C = ox; 4 | BWe
X =Y
y = t;
}

void swap{ float & x, float & y)
{
float t; // temporarily used in swapping

t = x;
X = Y;
y = t;

}

void main()

{

char chl, ch2;

cout << "Enter two Characters <chl, ch2>: ";

cin >> chl >> ch2; .

swap(chl, ch2); // compiler calls swap(char &a, char &b),
cout << "On swapping <chl, ch2>: " << chl << " " << ch2 <<Vendl;
int a, b;
~gout << "Engg%;gwo 1ntegers <a b> v,

_Cln >> f>“l‘5;‘ ? A

swap(a b), ‘/f comp ler calls swap(int &a, int &b);

o cout <<‘“0H wappin@ éé‘ b> higcca €< UM << b << endl;

Chapter 7: Modular Programming with Functions 27

float c, d;
cout << "Enter two floats <c, d>: *;
cin >> ¢ >> d;

swap(¢, d); // compiler calls swap(float &a, float &b);
cout << "On swapping <c, d>: " << ¢c << " " << d; :
Run i

Enter two Characters <chl, ch2>: R K
On swapping <chl, ch2>: KR

Enter two integers <a, b>: 5_10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5
On swapping <c, d>: 99.5 20.5

In the above program, three funciions named swap () are defined, which only differ in their argu-
ment data types: char, int, or £loat, In main (), when the statement =
swap(chl, ch2);

is encountered, the compiler invokes the swap () function which takes character type arguments. This
decision is based on the data type of the arguments. (see Figure 7.13).

void swap(float &x, float &y); 1;_

-

void swap(int &x, int &y), €< _ N

void swap(char &x, char &y); ®=~, . :
SRS « RS ok e T L R

~void- maing() .
. { O T IR o
" char c¢hl, ch2;. .
Cinta, by U T L
i float %, y,
c:swap (chl, ch2),"’fﬂ
swap(,“a,,: b«)! T 2
swap (X, ¥)i ~------"

anure 7 13: Functlon overloadmg

It is interesting to note the way. in. which the C++ compiler. 1mplcments functlon overloadmg Al-
though the functions share the same name in the source text (as in the .example.above,: swap), the
compiler (and hence the linker) uses quite different names. The conversion of a name.in Lbe source, file
to an internally used name is called name mangling. It can be.performed:as follows: the C++,compiler
might convert the name .void swap (int &,int &) to the internal name say VshowI, while an
analogous function with a char* argument mxght be called VswapCP. The aclual names, which are
internally used, depend on the compiler and are transparent to the programmer. -

A_nothélj_‘typ‘ic‘ql example program of fu'ncti'on:oVérl:Oéd’irig;v'i::s" illyutsftr:éx’tecfii in shéw cpp .

/7 show.cpp: display different types of information-with samei function
#include <iostream.h> .

218 Mastering C++

void show(int val)
{
cout << "Integer: " << val << endl;
}
void show(double val)
{
cout << "Double: " << val << endl;
}
void show(char *val)
{
cout << "String: " << val << endl;
}
int main ()

{

show(420); // calls show(int val);
show(3.1415); // calls show(double val);
show("Hello World\n!*); // calls show(char *val);
return(0);

}

Run

Integer: 420
Double: 3.1415
String: Hello World

!
The following remarks can be made on function overloading:

+ The use of more than one function with the same name, but having different actions should be
avoided. In the above example, the functions show () are somewhat related (they print information
on the screen). However, it is also possible to define two functions, say lookup (); one of which
would find a name in a list, while the other would determine the video mode. In this case, the two
functions have nothing in common except their name. It would, therefore, be more practical to use
names such as findname () and getvidmode (), which suggest the action they perform.

+ C++ does not permit overloading of functions differing only in their return value. The reason is that
it is always the programmer’s choice to inspect or ignore the return value of a function. For instance,
the fragment _

printf ("Hello World!\n");
holds no information concerning the return value of the function printf (). (The return value in
this case is an integer, which states the number of printed characters. This return value is practically
never inspected). Two functions print £ (), which would only differ in their return types and hence
they are not distinguished by the compiler.

« Function overloading can lead to surprises. For instance, imagine the usage of statements

show(0);

show(NULL) ;
where there are multiple overloaded functions as in the program show.cpp. The zero could be
interpreted here as aNULL pointer to a char, i.e., a (char*) 0, or as an integer with the value zero.
C++ will invoke the function expecting an integer argument, which might not be what the user
expects.

Chapter 7: Modular Programming with Functions 219

7.11 Function Templates

C++ allows to create a single function possessing the capabilities of several functions, which differ
only in the data types. Such a function is known as _function template or generic function. It permits
writing one source declaration that can produce multiple functions differing only in the data types. The
syntax of function template is shown in Figure 7.14.

Keyword for declaring function template
Keyword class
name of the template data-type
—» Function parameters of
type template, primitive

L&er-deﬁned
template <class T1l, class T2, ..> _ ="

ReturnType FunctionName (Arguments of type Tl and T2, ...)
{

// local variables of type T1l, T2, or any other

// function body, operating on variables of type T1, T2
// and other variables

Figure 7.14: Syntax of function template

The program swap5.cpp has functions with the same code pattern (same function body but
operating on different data types). The program swapé .cpp illustrates, declaring a single function
template from which all those functions having the same pattern of code, but operating on different data -
types can be created.

// swapb.cpp: multiple swap functions, function ove_xloading_',_‘,,, -
#include <iostream.h> e e

template <class T>
void swap(T & x, T & Yy)
{
t; // temporarily used in swapping, template variable

i

T
t
X =
Y

[l -

}

void main{()

{
char chl, ch2;
cout << "Enter two Characters <chl, ch2>: *;
cin >> chl >> ch2;

swap(chl, ch2); // compiler creates and calls swap(char &x, char &y };
cout << "On swapping <chl, ch2>: " << chl << " " << ch2 << endl;
int a, b;

cout << "Enter two integers <a, b>: ";
cin >> a >> b;

30 ‘Mastering Css

swap(a, b); // compiler creates and calls swap(int &x, int &y by
_cout << "On swapplng <a, b> " << a << " ' << b << endl;
float ¢, d;)

" 'dout << "Enter two floats <c, d>: *;
cin’>> ¢ >> 4; : . .
swap(¢, d); // compiler creates and calls swap(float &x, flodt &y);

cout << "On swapping <c, d>: " << ¢ << " * << d;
} :
Run

Enter two Characters <chl, ch2>: R K
On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 105

Enter two floats <c, d»: 20.5 99.5

On swapping <c, as: 99.5 20.5

Inmain (), when the compiler encounters the statement
swap (chl, ch2:);:
calling swap template function with char type variables, it internally creates a function of type
swap(char &a, char &b);
The compiler automaticallysidentifies.the-data type of the arguments passed to the template function,
creates a new function and makes an appropriate call. The process by which the compiler handles
funcnon templates is totally invisible to the user. Similarly, the compiler converts the following calls

i

v swap(a, b)) // compller creates and calls swap(int &x; int &y'); "
‘swap(¢,’d’y; // compiler creates and calls swap(float &x, ‘float: &y y;

into equivalent functions and calls them based on their parameter data types.

For more details on function templates, refer to the chapter: Generic Programming with Femplates.

7.12 Arrays and Functions

The arrays are passed by reference or by address. To pass an array to a function, it is sufficient to pass
the address of the first element of the array. The program soxt . cpp illustrates the concept of passmg
array type parameters to a function.

// sort.epp: function to sort elements of an array
#include <iostream.h>

enum boolean { false, true };

void swap(int & x, int & y)

{

int t; // temporary used in swapping
t = x;
X =y;
y = t;

}
70id BubbleSort(int * a, int size)
(

boolean swapped = true;

Chapter 7: Modular Programming with Functions 221

u

for(int i
s 0 ;
swapped = false; . o . B
for(int 3 = 0; j < (size - 1) - i; J#+) ..

if(al§1>al j+11)

{

- 'swapped = trie;:

~swap(al 3 1, al J+11

0; (i <« size = 1) && swapped; i++) :

}
}
void main(void)
{ Lo : a MR I EE T
int a[25]; I s
int i, size;
cout << "Program to sort elements..." << endl;
cout << "Enter the size of the integer vector <max- 25>
c1n >> SlZe, -

"o,
'

cout << "Enter the elements of the integer vector..." << endl;

for(i = 0; i < size; i++)
cin >> af{il;

BubbleSort(a, size)

cout << "Sorted Vector:" << endl

for(i = 0; i < size; di++)
cout << afi] << * *;

}

Run
Program to sort elements.

Enter the size of the Enteger ecESE KMAKIZSS 5 L

Enter the elements of the integer vector...

orted Vector:
3 6 8 9

N G I ke ko oy o

In'main (), the statement ~
BubbleSort(a, size);

invokes the sorting function by passing the address of the array variable a and the value of the vanable
size to it. Hence, any modification made to the elements of the array a will be reflected in the caller.

7.13 C++ Stack

The medium for communication between a caller and the callee is the stack, which is used to store
function parameters, return address, local variables, etc. When the function is invoked, the information
such as return-address and parameters, are pushed onto the stack by the function linkage mechanism;

222 Mastering C++

these values are pushed onto or popped from the stack using the C convention for parameter passing.
The argument values are pushed in order, from right to left. When they are popped out, the topmost
value stored in the stack will be passed to the first parameter in the function parameter list. The order of
storing the function parameters in the stack when the statement

func(a, b, ¢, 4);

is invoked is shown in Figure 7.15. Note that, the Pascal convention of parameter passing is to push
parameters from left to right when a function is invoked. Knowledge of parameter passing convention
is essential while doing mixed language programming.

Function call: func(a, b, ¢, d);

Parameters are pushed Parameters are pushed
from right to left from left to right
))
- - —-a - - b - =d - -
L __b - - | .
F-=-Cc-- L - -b - -
F--d -- - --a - -
/- /
C++ stack Pascal stack

Figure 7.15: Parameter passing and Stack

The program funcstk . cpp demonstrates the concept of storing and retrieving the elements from
the stack.

// funcstk.cpp: C++ convention of using stack
#include <iostream.h>
void Func(j, k)
{
cout<<"In the function the argument values are " << j<< " .. "<<k<< endl;
}
int main(void)
{
int i = 99;
Func(++i, 1);

IEV
]

In the function the argument values are 100 .. 99

The output of the program is not 100 .. 100 as expected, because of the C convention for passing

Chapter 7: Modular Programming with Functions 223

parameters. In the function call, first the value of right-most parameter i, which is 99 will be pushed
onto the stack, and will be followed by ++1;i.e., 100. Hence, the stack will have 99 at the bottom and
100 at the top. Hence, the statement

Func(++i, 1);

assigns the value 100 and 99 to the formal parameters j and k respectively.

7.14 Scope and Extent of Variables

Every variable in a program has some memory associated with it. Memory for variables are allocated and
released at different points in the program. For example, in case of normal local variables defined in
functions, memory is allocated when the function starts execution and released when the function
returns. A variable defined outside all function bodies is called a global variable, Its extent is the entire
life-span of the program. The period of time during which the memory is associated with a variable is
called the extent of the variable. Consider the following function

void func ()
{
int 1i;
i=10;
)
Allocation of memory to the integer variable i is the process of deciding the memory locations to be
occupied by 1. The memory of such local variables is allocated in the program stack when the function
func () is invoked. Naturally, the memory that was allocated to i is released when the function
terminates, and that memory space is available for use. Identifiers defined in a function are not acces-
sible outside that function and hence, their extent is limited to life of that function. However, there are
exceptions (static variables). For instance, consider the following segment of a program code:
void func ()
{
int i;
i = 10;
}

void main()

{

i = 20;
func () ;
i = 30;

}

When this program is compiled, the statements,

20;

30;

lead to compilation errors; the variable i is not visible inside the main (). So the definition of the
identifier i is valid only inside the func () . The region of source code over which the definition of an
identifier is visible is called the scope of the identifier. The scope of the variable i defined in func ()
is limited to this function only. If the statement

i
i

int i;
is defined in the beginning of main (), then no errors occur, but nevertheless, the variable i in the

224 ‘Mastering C++

func () and that in function main () :are different. Modifications to one variable do not affect the
other variables. Note- that the scope.of the-variable defined in main () is limited to main () only,
whereas its extent is entire life-span (execution time) of the program. The program variable.cpp
illustrates the scope and extent of local and global variables.

// variable.cpp: scope and extent of different variable

#include <iostream.h>

int g = 100; // global variable _ g
void funcl () i ’ ’ e
{ .
int g = 50; // local variable

cout- << "Local variable g in funcl(): " << g << endl;
) L

void func2()

{ R
cout << "In func2() g is visgible, since it is global.* << endl;
cout << "Incrementing g in func..." << endl;

g++; //accesses global variable

}

void main()

{
cout << "In main g is visible here, 51nce it is global.\n";
’cout << 'A551gn1ng>20 to ¢ in main...\n";
= 20; [/ adccesses global varxable
cout << "Calling funcl JAn*;
funcl() ;

cout- << "funcl returned. g 1s;“ << ¢ << endl;
cout << "Calling func2. \n H

func2();

cout << "func2 returned. g is " << g << endl;

}

Run

In main g is visible here, since it is global.
Assigning 20 to g in main...

Calling funcl...

Local variable g in funcl(): 50

funcl returned. g is 20

Calling func2...

In func2() g is visible, since it is global.
Incrementing g in func...

func2 returned. g is 21

The global variable g is visible to all functions (entire file) and its extent is the entire execution time
of the program. The scope and extent of local variable g of func1 () is limited to its function body.

The scope of a variable can confirm to a block, a function, a file, or an entire program (in case of
multimodule file). The variables defined within a block can be accessed only w1thm that block: The
program blockl . cpp illustrates the block scope of variables.

Chapter 7: Modular Programming with Functions 225

// block.cpp: illustration of the variables scope in blocks
.#include <iostream.h>
int main(void)

int 1 ='144; .
cout << "i = " << i;
{

/* nested block*/

int k = 12;
cin >> k;
i=1%k;

}
if(i ==0)]

cout << " i is a divisor of " << k; // Error: k undefined in main()
return 0; o : : g

Reference to variable k in the main block results in a compile-time error: Undefined symbol k in the
function main (), the variable k is declared inside the nested block within main (). The memory
space for the variable k is allocated when the execution of the block starts, and released when execution

‘reaches the end of the nested block. When a variable is accessed, the compiler first checks for its
“existence in the current block, and then moves outwards if it does not exist in the current block; this
process continues until the global definition. The function can access the identifiers in the parameter
list, the local definitions and the global definitions (if any).

7.15 Storage Classes

The period of time during which memory is associated with a variable is called the extent of the variable.
It is characterized by storage classes. The storage class of a variable indicates the allocation of storage
space to the variable by the compiler. Storage classes define the extent of a variable. C++ supports the
following four types of storage classes: ' / ’

e auto

o Tegister
« extern
«+ static

The syntax for defining variables with explicit storage class is shown in Figure 7.16. The storage
classes except extern are used for defining variables; extern is used for declaration of variables.
The scope and extent of auto and register storage class is the same. The scope of static
variables is limited to its block (maximum to a file), but its extent is throughout the execution time of the
program (does not matter whether it is local or global type).

auto, register,
static, or extern

N\

StorageClass DataType Variablel,....;

Figure 7.16: Storage classes and variable declaration

226 Mastering C++

Declaration Versus Definition

A declaration informs the compiler about the existence of the data or a function some where in the
program. A definition allocates the storage location. In C++, a piece of data or function can be declared
in several different places, but there must only be one definition. Otherwise, the linker will complain
(generates multiple definition error) while uniting all the object modules, if it encounters more than one
definition for the same function or piece of data. Almost all C and C++ programs require declarations.
Therefore, it is essential for the programmer to understand the correct way to write a declaration. As far
as data is concerned, except extexrn storage class, all others define data i.e., they not only direct the
compiler, but also allocate resource for a variable.

Auto Variables

By default, all the variables are defined as auto variables. They are created when the function/block is
entered and destroyed when the function/block is terminated. The memory space for local auto vari-
ables is allocated on the stack. The global auto variables are visible to all the modules of a program, and
hence, they cannot be defined many times unlike the declarations.

Register Variables

The allocation of CPU (processor) registers to variables, speeds up the execution of a program; memory
is not referred when such variables are accessed. The number of variables, which can be declared as
register are limited (typically two or three), within any function or as global variables (else they are
treated as auto variables). A program that uses register variables executes faster when compared to a
similar program without register variables. Itis possible to find out the allocation of register variables
only by executing and comparing the timing performance of the program (perceptible in large programs).
It is the responsibility of the compiler to allot register variables. In case the compiler is unable to doso,
these variables are treated as auto variables. It is advisable to define frequently used variables, such as
loop indices, as register variables. It is illustrated in the program regvar . cpp.

// regvar.cpp: use of register variable as loop index
#include <iostream.h>
#include <string.h>
void main()
{
char name([30];
register int i; // register variable
cout << "Enter a string: *;
cin >> name;
cout << "The reverse of the string is: ";
for(i = strlen(name)-1; i >= 0; i--)
cout << namel[il];
}

Runi

Enter a string: mahatma

The reverse of the string is: amtaham
Run2

Enter a string: malavalan

Chapter 7: Modular Programming with Functions 227

The reverse of the string is: malayalam

Static Variables

The static storage class allows to define a variable whose scope is restricted to either a block, a
function, or a file (but not all files in multimodule program) and extent is the life-span of a program. The
memory space for local static and global variables is allocated from the global heap. Static variables
that are defined within a function remember their values from the previous call (i.e., the values to which
they are initialized or changed before returning from the function). The static variables defined outside
all functions in a file are calledfile static variables. They are accessible only in the file in which they are
defined. The program count . cpp illustrates the use of function static focal variables.

// counf.cpp: use of static variables defined inside functions
#include <iostream.h>
void PrintCount{(void)
{
static int Count = 1; // Count is initialized only on the first call
cout << "Count = " << Count << endl;
Count = Count + 1; // The incremented value of Count is retained
}
void main(void)

{

PrintCount () ;
PrintCount () ;
PrintCount () ;

}

Bun

Count =1

Count = 2

Count = 3

The output of the program is a sequence of numbers starting with 1, rather than a string of 1's. The
initialization of static variable Count is performed only in the first instance of the function call. In
successive calls to the function, the variable Count has the same value as it had before the termination
of the most recent call. However, these static variables are not accessible from other parts of the
program.

Extern global variables are global to the file in which they are defined. They are used when the same
global variable is referenced in each one of the files and these variables must be independent of each
other across files. The use of global variables is not recommended, since they do not allow to achieve
function independence which is one of the basic ideas of modular programming.

Extern Variables

When a program spans across different files, they can share information using global variables. Global
variables must be defined only once in any of the program module and they can be accessed by all
others. It is achieved by declaring such variables as extern variables. It informs the compiler that
such variables are defined in some other file. Consider a program having the following files:

228 ~Masteting. C++ . . -

// filel.cpp: module one defining global variable
int done; // global variable definition
void funcl ()

{

Yoo e o,
void disp()- -,

// file2.cpp: module two of the project
extern int done; // global variable declaration
void func3

{

In filel.cpp, the statement

int done;
defines the variable done as a global variable. In file2.cpp, the statement

extern int done;
declares the variable done and indicates that it is defined in some other file. Note that the definition of
the variable done must appear in any one of the modules, whereas extern declaration can appear in any
or all modules of a program. When the linker encounters such variables, it binds all references:to the
same memory location. Thus, any modification to the variable done is visible to all the modules
accessing it.

If the global variable done is defined as static, it can be again defined in other modules since the
linker treats each as a-different variable. Such global static variables have scope restricted to a file and
extent is equal to the entire life-span of the program. The auto and static global variables are used mainly
in managing large multimodule software project. Note that, the memory space for global variable is
allocated from the global heap memory..

7.16 Functions with Variable Number of Arguments .

C++ functtons such as viprintf () and vprmtf () accept variable argument lists in addmon to
taklng a number of ﬁxed (known) pararneters Theva_arg, va_ end, and v va_start macros provide
access to these argument lists in the standard form. They are used for stepping through a list of
arguments when the called function does not know the number and types of th. ~ '™ents being
passed. The header file stdarg.h declares one type (va_ hst) and three friacros \va_start,
“va arg, and va end) :

The syntax. of macros handlmg varlable number Qf arguments are the followmg

#include <stdarg.h> .
void va_start(va_list ap, lastflx),

Chapter 7: Modular Programming with Functions 229

type va_arg(va_list ap, type):;
veid va_end(va_list ap);

va_list: This array holds information needed by va_arg and va_end. When a called function takes
a variable argument list, it declares a variable ap of type va_list.

va_start: This routine (implemented as a macro) sets ap to point to the first of the variable arguments
being passed to the function. va_start must be used before the first call to va_arg or va_end.
The macro va_start takes two parameters: ap and last£fix. ap is a pointer to the variable argu-
ment list. last fix is the name of the last fixed parameter passed to the caller.

va_arg: This routine (also implemented as a macro) expands to an expression that has the same type
and value as the next argument being passed (one of the variable arguments). The variable ap to
va_arg should be the same ap that va_start initialized. Note that because of default promotions,
char, unsigned char. or float types cannot be used with va_arg.

When va_arg is used first time, it returns the first argument in the list. Every successive use of
va_arg, returns the next argument in the list. It does this by first dereferencing ap, and then incrementing
ap to point to the following item. va_arg uses the type to perform both the dereferencing and to
locating the following item. Each time va_arg is invoked, it modifies ap to point to the next argument
in the list.

va_end: This macro helps the called function to perform a normal return. va_end might modify ap in
such a way that it cannot be used unless va_start is recalled. va_end should be called after
va_arg has read all the arguments; failure to do so might cause a program to behave erratically.

Return Value: va_start and va_end return no values; va_arg returns the current argument in
the list (the one that ap is pointing to).

The syntax of function receiving variable number of arguments is:
ReturnType Func{ argl, [arguments], ...);

It is same as the normal function except for the last three dots, which indicates that the function is of
type variable arguments. The program add . cpp illustrates the use of variable number of arguments.

// add.cpp: variable number of arguments to a function
#include <iostream.h>
#include <stdarg.h>
int add(int argc, ...)
{
int num, result;
va_list args;
va_start(args, argc): // link to variable arguments
result = 0;
for(int i=0; i < argc; i++)
{
num = va_arg(args, int); // get argument value
result += num;
}
va_end(args); // end of arguments
return result:;

230 Mastering C++

void main ()

I
v

int suml, sum2, sum3;

suml = add(3, 1, 2, 3);

cout << "suml = " << suml << endl;
sum2 = add(1, 10);

cout << "sum2 " << sum2 << endl;
sum3 = add(O
cout << “sum3

- i

" << sum3 << endl;

Run

suml = 6
sum2 = 10
sum3 = 0

The function declarator (prototype)

int add(int argc, ...)
indicates that it takes one known argument and the remaining are unknown number of arguments. The
three dots indicate that the function takes variable arguments, to which a chain has to be built. In
add () function, the statement

va_list args;
creates a pointer variable named args. The macro call statement

va_start(args, argc); // link to variable arguments
links variable arguments to the variable args. The variable args is the last known argument and those
that follow are variable arguments. The statement

num = va_arg(args, int); // get argument value
accesses the argument of type integer and assigns to the variable num. Later, args is updated to point
to the next argument. The statement

va_end(args); // end of arguments
indicates the end of access to variabie arguments using args. In main (), the statement

suml = add(3, 1, 2, 3);
invokes the function add () and the first argument is a known argument indicating the number of
variable arguments.

The last argument in the list of variable number of arguments must be established by the user.
Another way of indicating the end of variable arguments is illustrated in the program sum. cpp.

// sum.cpp: variable arguments example
#include <iostream.h>
#include <stdarg.h>
// calculate sum of a 0 terminated list
void sum(char *msg, ...)
{

int total = 0;

va_list ap;

int arg;

Chapter 7: Modular Programming with Functioris 231

va_start (ap, msg);

while ((arg = va_arg(ap,int)) != 0) {
total += arg; -

}

cout << msg << total;

va_end(ap) ;

int main(void)

{
sum(*The total of 1+2+3+4 is ", 1,2,3,4,0);
return 0;

}

Run
The total of 1+2+3+4 is 10

In main (), the statement
sum("The total of 1+2+3+4 is ", 1,2,3,4,0);
invokes the variable argument function. The function sum () is designed such that when a zero valued
argument is encountered, it is understood that no more arguments exists for further processing. Hence,
the last argument O (zero) in this case, is the end-of-argument indicator. The programmer has full
freedom for selecting suitable end-of-argument indicator.

7.17 Recursive Functions

Many of the scientific operations are expressed using recurrence relations. C++ allows the programmers
to express such arelation using functions. A function that contains a function call to itself, or a function
call to a second function which eventually calls the first function is known as a recursive function. The
recursive definition for computing the factorial of a number can be expressed as follows:

1ifn=20

fact(n) =1 & fact(n-1), otherwise

Recursion, as the name suggests, revolves around a function recalling itself. Recursive functions
are those, in which there is atleast one function call to itself (there can be more than one call to itself as
in the tower of hanoi algorithm). The recursive approach of problem solving substitutes the given
problem with another problem of the same form in such a waythat the new problem is simpler than the
original.

Two important conditions which must be satisfied by any recursive function are:

1. Each time a function calls itself it must be nearer, in some sense, to a solution.
2. There must be a decision criterion for stopping the process or computation.

Recursive functions involve the overhead of saving the return address, formal parameters, local
variables upon entry, and restore these parameters and variables on completion.

Factorial of a Number

The program rfact . cpp computes the factorial of a number. It has a recursive function fact ()
which implements the above stated definition of recursion.

232 Mastering C++

// rtact.cpp: factorial of a number using recursion
#include <iostream.h>
void main(void)
{
int n;
long int fact(int); // prototype
cout << "Enter the number whose factorial is to be found: *;
cin >> n;
cout << "The factorial c¢f " << n << " is " << fact(n) << endl;

}
long fact(int num)
{
if(num == 0)
return 1;
else

return num * fact(num - 1);

}

Run

Enter the number whose factorial is to be found: 5
The factorial of 5 is 120

Tower of Hanoi

Tower of hanoi is a historical problem, which can be easily expressed using recursion. There are N disks
of decreasing size stacked on one needle, and two other empty needles. It is required to stack all the
disks onto a second needle in the decreasing order of size. The third ncedle can be used as a temporary
storage. The movement of the disks must conform to the following rules:

1. Only one disk may be moved at a time
2. A disk can be moved from any needle to any other
3. At no time, a larger disk rests upon a smaller one.

The program hanoi . cpp implements the tower of hanoi problem. The physical model of a tower of
hanoi problem is shown in Figure 7.17.

// hanoi.cpp: Tower of hanoi simulation using recursion
#include <iostream.h>
void main(void)
{
unsigned int nvalue;
char source = 'L', intermediate = 'C', destination = 'R';
void hanoi(unsigned int, char, char, char);
cout << "Enter number of disks: *;
cin >> nvalue;
cout << "Tower of Hanoi problem with " << nvalue << " disks" << endl;
hanoi(nvalue, source, intermediate, destination); '
}
void hanoi (unsigned n, char left, char mid, char right)
{
if(n !'= 0)
{

Y
i

Run

// Move n-1 disks from starting needle to intermediate needle

hanoi(n-1,

// Move n-1 disks from intermediate needle to destination needle

Chapter 7: Modular Programming with Functions

left, right, mid);
++ Move disk n from start to destination
cout<< "Move disk " << n << " from " << left<<" to " << right <<endl;

hanoi(n-1, mid, left, right);

Enter number of disks: 3
Tqower of Hanoi problem with 3 disks-

Move
Move
Move
Move
Move
Mcve
Move

disk
disk
disk
disk
disk
disk
disk

1 from
from
from
from
from
from
from

PP W N

oo NN o T il I ol o)

to
to
to
to
to
to
to

™t

=2

Initial Configuration

Move 1

L &

=)

Move 2 Move 3

Move 4 Move 5
/& [

Move 6 Move 7

Figure 7.17: Tower of Hanol

233

234 Mastering C++

7.18 Complete Syntax of main ()

The functionmain () takes three input parameters called command-line arguments. These are passed
from the point of program execution (usually operating system shell or command interpreter). The
general format of themain () function is shown in Figure 7.18

Function return type:
void or int Arguments count
Array of pointers to command line arguments

Pointers to
environment variables

AAAA
ReturnType main ([int argc, char *argv([], [char **envp]l)

{
// body of the main function

Figure 7.18: Syntax of the main function

The return type of the main function must be either int or void. It is normally used to indicate the
status of the program termination. The command-line arguments have the following meaning:

argc: argument count, holds the value of the number of arguments passed to the main () function
and its value is always positive.

argv: argument vector, holds pointers to the arguments passed from the command line. The meaning
of various elements of the argv vector is as follows:

argv(0] =pointer to the name of the executable program file (command)

argv[1 1 .. argv[argc - 1]= pointers to argument strings

envp: environment parameter, holds pointers to environment variables set in the operating system
during the program execution. It includes path and environment parameters. It is optional and not a
ANSI specification.

When the command disp hello isissued at the system prompt, the arguments are set as follows:
argc = 2
argv{ 0] = "disp"
argv[1] = "hello’ :
The program args . cpp priats the list of arguments passed to it. To execute this program, issue the
command args Hello World at the system prompt.

// args.cpp: printing command line arguments
#include <iostream.h>
void main(int arge, char *argv(])

{

int 1i;
cout << "Argument Count = " << argc;
cout << "\nProgram Name = " << argv[0 J;

cout << "\nArgument Vectors Are:\n";
for (1 = 0; i < argc; i++)
cout << argv([i] << “\n”;

Chapter 7: Modular Programming with Functions 235

Bun

Argument Count = 3

Program Name = D:\CPP_SRC\MC2CPP.C02\ARGS.EXE
Argument Vectors Are:
D:\CPP_SRC\MC2CPP.C02\ARGS.EXE

Hello

World

Program Execution Status

Normally, after the complete execution of the program, it exits from themain () function itself. How-
ever, prograirs can be terminated from anywhere within the program. The return type of the main
function can be used by the system to decide whether the program terminates with successful execu-
tion or not. The return statement in main ()

return 0; // program return type
or the exit () statement anywhere in the program
exit(0)

terminates the program with the program execution status as zero. The general convention is that, the
return value O is treated as a successful execution of the program and nonzero value is interpreted as
unsuccessful execution of the program. The method of identifying this return value from outside the
program (from where it is invoked), depends on the operating system environment in which the program
is executed. For instance, under MS-DOS operating system, the system sets the environment variable
errorlevel to the value returned by the programmer. The user can inspect the value held by the
errorlevel variable to decide the status of program execution. The program fullmain.cpp
displays the command line arguments and environment variables.

// tullmain.cpp: prints command line arguments and environment variables
#include <iostream.h>
int main(int argc, char **argv, char **envp)
{
cout << "The number of command line arguments is: " << argc << endl;
cout << "The command line arguments are as follows" << endl;
for(int i = 0; 1 < argc; i++)

cout << "argv[" << i << "] : " << argv[i] << endl;
cout << "The environment variables are:" << endl;
i=20;

while(*envp(i])
cout << envpl[i++] << endl;
return 0;

)

Run

The number of command line arguments is: 3

The command line arguments are as follows

argv (0] : C:\CPP_SRC\FUNCTION.CO7\FULLMAIN.EXE

argv[l] : Hello

argv(2] : World

The environment variables are:

COMSPEC=C : \COMMAND . COM

PROMPT=pSg
PATH:C:\BC4\BIN;C:\EXCEEDW\PATHWAY;C:\BC4\BIN;C:\WINDOWS;C:\DOS;C:\PATHWAY;

236 Mastering C++

Review Questions

7.1 What is modular programming and what are its benefits ? Explain the same with a C++ example.

7.2 Explain different components of a C++ program with a suitable example program.

7.3 What are the differences between actual parameters and formal parameters ?

7.4 What are caller and callee ? List the various components cavsing the overhead of function
invocation.

7.5 What are library functions ? Explain how they ease program development. What are the different
categories of functions supported by C++ library ?

7.6 What is parameter passing ? Explain parameter passing schemes supported by C++.

7.7 Develop a functior to sort numbers using bubble sort technique. Write a driver function also.

7.8 What are the differences between parameter passing by value and passing by address ?

7.9 What are the benefits of pass by reference method of parameter passing over pass by pointer ?

7.10 What are default arguments ? Write a program to compute tax. A tax compute function takes two
arguments: amount and tax percentage. Default tax percentage is 15% of income.

7.11 State whether the following statements are valid or not ? Give reasons.
tax_amount{ int amount, int percentage = 15); // prototype
tax_amount(, 5);
show(char ch = 'A', int count = 3)Y // prototype
show(, 2);
show(, };
show() ;
7.11 What are inline functions ? Write an inline function for finding minimum of two numbers.

7.12 What is function overloading ? Write overloaded functions for computing area of a triangle. a
circle, and a rectangle. Develop a driver function.
7.13 What are function templates ? Write a template based program for sorting numbers.

7.14 What is the difference between parameter passing in C++ and Pascal ? What is the result of:
sum = add(i++, ali]); // if i=1 and a[] = { 5, 10, 15, 20 }

7.15 Define terms: scope and extent. Explain different storage classes supported by C++. Also explain
there scope and extent.

7.16 Write a program having a variable argument function to multiply input numbers.

7.17 What are recursive functions ? Write a program to find the ged of two numbers using the follow-
ing Euclid’s recursive algorithm.

gcd(n, m) ifn>m
gcd(m,n) = m if n =20
gcd(n, m¥n), otherwise ’

7.18 Write a program for adding integer parameters passed as command line arguments.
7.19 Write a program to generate fibonacci series using the following recursive al gorithm:

{Oifn=0

fib(n) =¢{ 1 if n =1

fib(n-1)+fib(n-2), otherwise

7.20 Implement a recursive binary serach using divide and conquer technique.

8

Structures and Unions

8.1 Introduction

Structures combine logically related data items into a single unit. The data items enclosed within a
structure are known as members and they can be of the same or different data types. Hence, a structure
can be viewed as a heterogeneous user-defined data type. It can be used to create variables, which can
be manipulated in the same way as variables of standard data types. It encourages better organization
and management of data in a program.

8.2 Structure Declaration

The declaration of a structure specifies the grouping of various data items into a single unit without
assigning any resources to them. The syntax for declaring a structure in C++ is shown in Figure 8.1.

struct StructureName

{
DataType memberl;

DataType memberl;
structure members

DataType memberN;
};

Figure 8.1: Structure declaration

The structure declaration starts with the structure header, which consists of the keyword struct
followed by a tag. The tag serves as a structure name, which can be used for creating structure vari-
ables. The individual members of the structure are enclosed between the curly braces and they can be
of the same or different data types. The data type of each variable is specified in the individual member
declarations. Like all data structure declarations, the closing brace is terminated with a semicolon.

Consider a student database consisting of student roll number, name, branch, and total marks
scored. A structure declaration to hold this information is shown below:

struct Student

{
int roll_no;
char name[25];
char branch{15];
int marks;

238 Mastering C++

The data items enclosed between flower brackets in the above structure declaration are called
structure elements or structure members. Student is the name of the structure and is called structure
tag. Note that, some members of Student structure are integer type and some are character array type.
The description of various components of the structure Student is shown in Figure 8.2.

structure name

‘struct Student
{

int roll_no;
char name[25];

char branch([15]}; members of
int marks; the structure

}i
Figure 8.2: Declaration of structure Student

The individual members of a structure can be variables of built-in data types, pointers, arrays, or
even other structures. All member names within a particular structure must be different. However,
member names may be the same as those of variables declared outside the structure. The individual
members cannot be initialized inside the structure declaration. For example, the following declaration is
invalid:

struct Student

{

int roll_no = 0; // Error: initialization not allowed here
char name(25];

char branch({15];

int marks;

}:

8.3 Structure Definition

The declaration of a structure will not serve any purpose without its definition. It only acts as a
blueprint for the creation of variables of type struct (structure). The structure definition creates
structure variables and allocates storage space for them. Structure variables can be created at the point
of structure declaration itself, or by using the structure tag explicitly as and when required. The most
commonly used syntax for structure definition is shown in Figure 8.3.

' structure variables

[struct] StructureName varl, var2, ...;

keyword struct
is optional

Figure 8.3: Syntax of structure definition

The use of the keyword struct in the structure definition statement is optional. The following
statements create variables of the structure Student declared earlier:

Chapter 8: Structures and Unions 239

struct Student sl;
or
Student sl1;

Figure 8.4 shows the storage of the members of the structure Student.

—]

e 2 bytes \
I~

struct Student 25 bytes

{ }

N 72

int roll_no; N sl;
char name([25]; Na ?
char branch[15]; 15b
int marks; ytes
Y 4
of V2 bytes J

_/—\

Student sl1;
Figure 8.4: Storage organisation when structure variable is defined

The structure variables can be created during the declaration of a structure as follows:

struct Student

{
int roll_no;
char name(25];
char branch[15];
int marks;

} sl;

In the above declaration, Student is the structure tag, while s1 is a variable of type Student. If
variables of this structure type are not defined later in the program, then the tag name Student can be

omitted as shown below:

struct
{

int roll_no;
char name[25];
char branch[15};
int marks;

} sl;

It is not a good practice, to have both declaration and definition in the same statement.

240 Mastering C++

Multiple variables of a structure can be created using a single statement as follows:
struct Student sl, s3, s4;
or
Student sl1, s3, s4;

All these instances are allocated separate memory locations and hence, each one of them are indepen-
dent variables of the same structure type as shown in Figure 8.5.

struct Student

{
int roll_no;
char name([25];
char branch{15];
int marks;

Y

Student sl,s2,s3; J

A

sl s2 s3

Figure 8.5: Variables of type Student

8.4 Accessing Structure Members

C++ provides the period or dot (.) operator to access the members of a structure independently. The dot
operator connects a structure variable and its member. The syntax for accessing members of ‘a structure
variable is shown in Figure 8.6.

structure variablel l structure member

structvar .membername

- Figure 8.6: Accessing a structure member using dot operator

Here, structvar is a structure variable and membername is one of its members. Thus, the dot
operator must have a structure variable on its left and a legal member name on its right. Consider the
following statement:

Student sl;
Each member of the structure variable s1 can be accessed using the dot operator as follows:
sl.roll_no will access sl's roll_no
sl.name will access sl's name
sl.branch will access s1's branch
sl.marks will access s1's marks

Chapter 8: Structures and Unions 241

The following are valid operations on the structure variable s1:
sl.roll _no = 5;
cin >> sl.roll_no;
strcpy(sl.name, "Mangala");
cout << sl.name;
strepy(si.branch, "Computer”);

Accessing members of a structure using structure tag is not allowed. Hence, a statement such as
Student.roll no = 5; // Error: Student is not a structure variable

is invalid; structure name Student is a data type like int, and not a variable. Just as int = 10 is
invalid, student.roll_no = 5 isinvalid.

The program studentl.cpp illustrates the various concepts discussed in the earlier sections
such as structure declaration, definition, and accessing members of a structure.

// studentl.cpp: processing of student data using structures
#include <iostream.h>

// structure declaration

struct Student

{
int roll_no;
char name([25];
char branch(15];
int marks;
}:
void main()
{
Student sil; // structure definition
cout << "Enter data for student..." << endl;
cout << "Roll Number ? ";
cin >> sl.roll_no; // accessing structure member
cout << "Name ? ";
cin >> sl.name;
cout << "Branch ? *;
cin >> sl.branch;
cout << "Total Marks <max-325> ? ";
cin >> sl.marks;
cout << *"Student Report" << endl;
cout << "-----—=—-= ——-—-=-" << endl;
// process student data
cout << "Roll Number: " << sl.roll _no << endl;
cout << "Name: " << sl.name << endl;
cout << "Branch: " << sl.branch << endl;
cout << "Percentage: " << sl.marks* (100.0/325) << endl;
}
Run

Enter data for student...
Roll Number ? 3
Name ? Mangala

242 Mastering C++

Branch ? Computer
Total Marks <max-325> ? 290
Student Report

Roll Number: 5

Name: Mangala

Branch: Computer
Percentage: 89.230769

Precedence of the DOT operator

The dot operator is a member of the highest precedence group, and its associativity is from left to right.
Hence, the expression such as ++stvar .membern is equivalent to ++ (stvar .membern), imply-
ing that the unary operator will act only on a particular member of the structure and not the entire
structure.

8.5 Structure Initialization

Similar to the standard data types, structure variables can be initialized at the point of their definition.
Consider the following structure declaration:

struct Student

{
int- roll_no;
char name[25];
char branch{15];
int marks;

Y

A variable of the structure Student can be initialized during its definition as follows:
Student sl ={ 5, “Mangala”, “Computer”, 290 };

The initial values for the components of the structure are placed in curly braces and separated by
commas. The members of the variable s1, roll_no, name, branch, andmarks are initialized to 5,
“"Mangala”, “Computer”, and 290 respectively (see Figure 8.7).

The program days . cpp illustrates the initialization of the members of a structure at the point of a
structure variable definition.

/ / days.cpp: structure members initialization at the point of definition
#include <iostream.h>
// structure declaration
struct date
{
int day;
int month;
int year;
Yi
void main()
{
date d1 = { 14, 4, 1971 };
date d2 = 3, 7, 1996 };

|
-~

Chapter 8: Structures and Unions 243

cout << "Birth date: ";
cout << dl.day <<"-"<< dl.month <<"-"<< dl.year;

cout << endl << "Today date: ";
cout << d2.day <<"-"<< d2.month <<"-"<< d2.year;

}
Run

Birth date: 14-4-1971
Today date: 3-7-1996

~_/”//’—Q\

lwroll_no \

name

branch AN

marks4«~ |

Student sl = , "Mangala", "Computer", 290};

Figure 8.7: Structure members' initialization during definition

8.6 Nesting of Structures

A member of a structure may itself be a structure. Such nesting enables building of very powerful data
structures. The Student structure can be enhanced to accomodate the date of birth of a student. The

new member birthday is a structure of type date by itself as shown below:

struct date
{
int day:;
int month;
int year;
}i
struct Student
{
int roll_no;
char name[25];
struct date birthday;
char branch({15];
int marks;

244 Mastering C++

The structure to be embedded must be declared before its use. Another way of declaring a nested
structure is to embed member structure declaration within the declaration of a new structure as follows:
‘'struct Student

{
int roll_no;
char name[25];
struct date
{
int day;
int month;
int year;
} birthday;
char branch[15];
int marks;
}i
The embedded structure date is declared within the enclosing structure declaration. A variable of
type Student can be defined as follows:
Student sl1;
The year in which the student s1 was born can be accessed as follows:
sl.birthday.year
The following are the some of the valid operations on the variable s1:

sl.roll_no = 5;

cin >> sl.roll_no;
sl.birthday.day = 2;
sl.birthday.month = 2;
sl.birthday.year = 1972;

—]

(roll_no
name

birthday

Student sl;<

sl.birthday.year = 1972;

Figure 8.8: Accessing members of nested structures

Chapter 8: Structures and Unions 245

The dot operator accessing a member of the nested structure birthday using the statement
sl.birthday.year = 1972;

1s shown in Figure 8.8. The program student2 . cpp illustrates the declaration, definition, and pro-
cessing of nested structure members.

A statement such as
sl.date.day = 2; // error
is invalid, because a member of the nested structure must be accessed using its variable name.

// student2.cpp: processing of student data using structures
#include <iostream.h>
// structure declaration
struct date
{
int day;
int month;
int year;
}i
struct Student
{
int roll_no;
char name([25];
struct date birthday; // structure within a structure
char branch[15]; .
int marks;
}i
void main()
{
Student sl; // structure definition
cout << "Enter data for student..." << endl;
cout << "Roll Number ? "*;
cin >> sl.roll_no; // accessing structure member
cout << "Name ? ";
cin >> sl.name;
cout << "Enter date of birth <day month year>: ";
cin >> sl.birthday.day >> sl.birthday.month >> sl.birthday.year;
cout << "Branch ? ";
cin >> sl.branch;
cout << "Total Marks <max-325> ? ";
cin >> sl.marks;
cout << "Student Report" << endl;

cout << "----—--mmmm e v << endl;

// process student data

cout << "Roll Number: " << sl.roll_no << endl;
cout << "Name: " << sl.name << endl;

cout << "Birth day: *; .
cout<<sl.birthday.day <<"-"<< sl.birthday.month<<"-"<<sl.birthday.year;
cout << endl << "Branch: " << sl.branch << endl;

cout << "Percentage: " << sl.marks*(100.0/325) << endl;

246 Mastering C++

Run

Enter data for student...

Roll Number ? 9

Name ? Savithri

Enter date of birth <day month year>: 2 1972

Branch ? Electrical
Total Marks <max-325> ? 295
Student Report

Roll Number: 9

Name: Savithri

Birth day: 2-2-1972
Branch: Electrical
Percentage: 51.076923

8.7 Array of Structures

Itis possible to define an array of structures; each array element is similar to a variable of that structure.
The syntax for defining an array of structures and accessing its members using an index, is shown in
Figure 8.9.

integer constant value

v

StructureName ArrayName[size];

(a) Array of structures definition

ArrayName [index]

(b) Accessing a particular array element

ArrayName [index] .MemberName

(c) Accessing a particular member

Figure 8.9: Array of structures and member access

The following examples illustrate the concepts of defining arrays of structures and manipulating
their members. Consider the structure declaration given below:

struct Student

{
int roll_no;
char name[25];
struct date birthday;
char branch([15];
int marks;

Chapter 8: Structures and Unions 247

An array of the above structure can be defined as follows:
Student s{10];

The variable s is a 10 element array of structures of the type Student. The 5% structure can be
accessed as follows:

s(4]; // arrays are numbered from 0 to n-1

The following statements access members of the structure array elements:

s[4] .name; // access the name of 5th structure
s[0] .marks[5]; // access 6th character of lst structure
&s[2] .name // address of 3rd s structure member name

Another method of defining an array of structures is as follows:

struct Student

{
int roll_no;
char name([25];
struct date birthday;
char branch[15];
int marks;

} s[10];

More than one array of structure variables can be defined in a single statement as follows:
student classl[10], class2[15];

It defines two arrays of structure variables class1 and class2 of size 10 and 15 respectively. Each
element of the c1ass1 will be a structure of type Student. The program student3 . cpp illustrates
the method of processing of an array of structures.

// student3.cpp: processing of student data using structures
#include <iostream.h> i
struct Student
{
int roll_no;
char name[25];
char branch(15];
int marks;
}i
void main()
{
// data definitions of 10 students
Student s[10];

int n;
cout << "How many students to be processed <max-10>: ";
cin >> n;
// read student data
for(int i = 0; 1 < n; i++)
{
cout << "Enter data for student " << 1+l << "..." << endl;

cout << "Roll Number ? ";
cin >> s(i).roll_no;
cout << "Name ? ";

248 Mastering C++

cin >> s{i}.name;

cout << "Branch ? *;

cin >> s[i] .branch;

cout << "Total Marks <max-325> ? *;
cin >> s[i].marks;

}
cout << "Students Report' << endl;
cout << M- mmmmmm e ' << endl;
// process student data
for(i =0; 1 < n; i++)
{
cout << "Roll Number: " << s[i].roll_no << endl;
cout << "Name: " << s[i].name << endl;
cout << "Branch: " << s[i].branch << endl;
cout << "Percentage: " << s[i].marks*(100.0/325) << endl;
}
}
Run

How many students to be processed <max-10>: 2
Enter data for student 1...

Roll Number ? 5

Name ? Mapgala

Branch ? Computer

Total Marks <max-325> ? 290

Enter data for student 2...

Roll Number ? 9

Name ? Shivakumar

Branch ? Electronics
Total Marks <max-325> ? 250

Students Report

Roll Number: 5

Name: Mangala

Branch: Computer
Percentage: 89.230769
Roll Number: 9

Name: Shivakumar
Branch: Electronics
Percentage: 76.923077

Initialization of Array of Structures
An array of structures can be initialized in the same way as a single structure and hence, the discussion
regarding the initialization of a single structure is still relevant. This is illustrated by the following
example:

Student s[5] = {

2, "Tejaswi", "CS", 200,

3, "Laxmi H", "IT", 215,

5, "Bhavani", "Electronics", 250,
7, "Anil", "Civil*, 215,

Chapter 8: Structures and Unions 249

9, "Savithri", "Electrical", 290

"The variable s is an array of 5 elements of type Student. Thus, structure element s[0] will be
assigned the first set of values, s [1] the second set of values. etc. Note that there are 5 sets of values
in the 1nitialization. which are placed in different rows for clarity. The values are separated by commas
and enclosed within braces. with the closing brace being followed by a semicolon. To improve the
readability of the program code, it is advisable to enclose the individual sets of values within braces as
shown below:

Student s({5] = {
{2, "Tejaswi", "CS", 200 },
{ 3, "Laxmi", "IT*, 215 7},
{ 5, "Bhavani", "Electronics", 250 },
{ 7, "Anil", "Civil", 215 1},
{ 9, "Savithri", "Electrical", 290 }

}i
The program studentd4 . cpp illustrates the initialization of an array of structures at the point of its
definition.

// studentd.cpp: array of structures and their initialization
#include <iostream.h>
struct Student
{
int roll_no;
char name(25];
char branch(15];
int marks;
};
int const STUDENTS_COUNT = 5;
void main()
{
// data definitions of 10 students
Student s{ STUDENTS_COUNT] = {
{ 2, "Tejaswi", "CS", 285},

{ 3, "Laxmi*, "I1T", 215 },
{ 5, "Bhavani", "Electronics", 250 },
{7, "Anil", "Civil", 215},
{ 9, "Savithri", "Electrical", 290 }
Y oo
cout << "Students Report" << endl;
cout << "——--mmemmm ' << endl;

// process student data
for(int i = 0; i < STUDENTS_COUNT; i++)
{
cout << "Roll Number: " << s[i).roll_no << endl;
cout << "Name: " << s[i].name << endl;
cout << "Branch: " << s[i].branch << endl;
cout << "Percentage: " << s[i].marks*(100.0/325) << endl;

250 Mastering C++

Run
Students Report

Roll Number: 2
Name: Tejaswi
Branch: CS
Percentage: 87.6923
Roll Number: 3
Name: Laxmi

Branch: IT
Percentage: 66.1538
Roll Number: 5
Name: Bhavani
Branch: Electronics
Percentage: 76.9231
Roll Number: 7
Name: Anil ’
Branch: Civil
Percentage: 66.1538
Roll Number: 9
Name: Savithri
Branch: Electrical
Percentage: 89.2308

Operations Iinvolving the Assignment Operator

The individual structure member can be used in an assignment statement just like any other ordinary
variable. It is illustrated in the following statements:

s[{1l].marks = 290; // marks set to 290

s[1l].marks += 5; // marks is incremented by 5
Notice that only the individual structure members are accessed, and not the entire structure. If the
structure member is itself a structure, then the embedded structure’s member is accessed as follows:

s[1] .birthday.day
It accesses the member day of the structure variable birthday embedded in the 2™ element of the
array of structure variable s. The assignment operator can also be used to copy variables of the same
structure. For instance, the statement,

sl = s2;)
copies contents of 2 to s1, which are variables of the student structure. It is performed by copying
each member transparently. Array of structure elements can also be copied as follows:

s{2]) = s(1];

s[i) = s[3];
If a structure has members of type pointers, then only the address stored in that pointer member is
copied and hence, such members still point to that pointed to by the source variable. In sucha situation,
make sure that memory is allocated, and explicitly copy the elements pointed to by the pointers. If this
is not done, it might result in a dangling reference. It happens when the destination variable releases
memory and the source variable continue to exist. (Dangling reference: it refers to a situation when a
pointer to the memory item continues to exist, but memory allocated to that item is released. Garbage
memory: it indicates that the memory item continues to exist but the pointer to it is lost; it happens when
memory is not released explicitly.)

